Real world study with

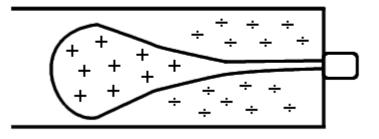
Code Saturne

Claus Andersen

Introduction

For a long time I've wanted to try and use CFD for a practical purpose and compare it to real-world results, and now during my internship, I have the chance to try it out. For all intent and purposes, I'm far from an expert on CFD nor fluid dynamics, but I have done a few experiments and have a good general idea of how things come together in fluid dynamics/CFD. What this sums up to, is 'nothing is written in stone here' – There may be errors and the setup is probably far from optimal, there is always room for improvement.

Here is a hands on case with Code Saturne without getting too technical.


/Claus Andersen, April 20th '09

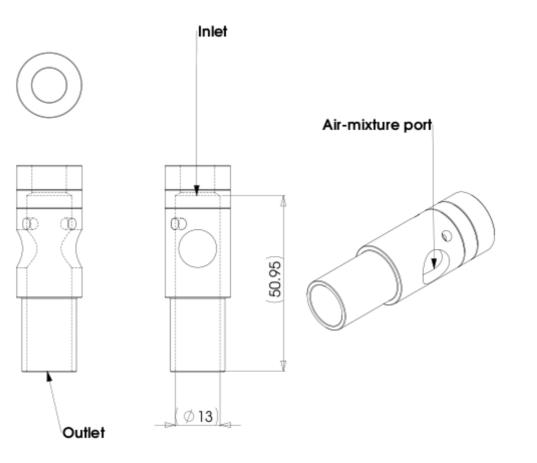
Goal

To create a computer model that corresponds to real world – with the goal of further development of burner tube. This is an initial simulation to make sure I can make Code_Saturne emulate real world conditions. The goal is however, not to be 100% physically correct, nor does time permit me to set up the experiment to a laboratory grade.

Scenario

In a gas fire a burner tube is used to mix the fuel (in this case natural gas) with oxygen using the Venturi effect. The pressurized fuel is sent from the high pressure bottle, through a regulator and from the regulator through a nozzle into the burner tube. The gas jet from the nozzle creates a low pressure zone around the base of the jet which sucks in air through the aeration port and mixes it in the burner tube before it is sent into the burner1.

Scenario


Among other things, the geometry of the nozzle and the velocity of the fluid determines the shape of the jet and the magnitude of the low pressure zone. In this case I've guestimated a discharge coefficient of 0.5, based on the geometry of the nozzle and calculated the exit velocity accordingly.

The exit orifice has a diameter of ~1.9mm

In this study I wont simulate what happens inside the nozzle, nor will I concern myself too much whether the shape of the gas jet is physically correct at the exit – That will be discussed a bit more later on.

Scenario

Mathematical approach

Collecting data

For my simulation I need to input some data into the model, this was done in the following manner:

- Measure volumetric flow rate of the gas going into the burner tube using a flowmeter on the actual gas fire and compare it to the technical documents specified by the test lab
- Guestimate a discharge coefficient for the nozzle using empirical numbers from a table
- Acquiring physical properties for natural gas (using pure methane)
- Measure pressure differential on the regulator
- Calculate exit velocity of gas jet using above values

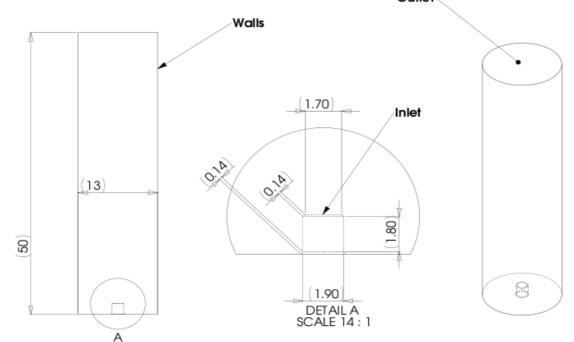
Result

Calculating the exit velocity at the nozzle has been done in two ways – using the flow rate and using a theoretical approach. Both results equals \sim 38m/s but since I know that that is a bit high considering the setup and the values used, I back it down a bit to \sim 33m/s for the simulation.

See Media: <u>Mathcad-dyse.xmcd.pdf</u> MathCAD PDF for calculation.

Simulation approach

• Software

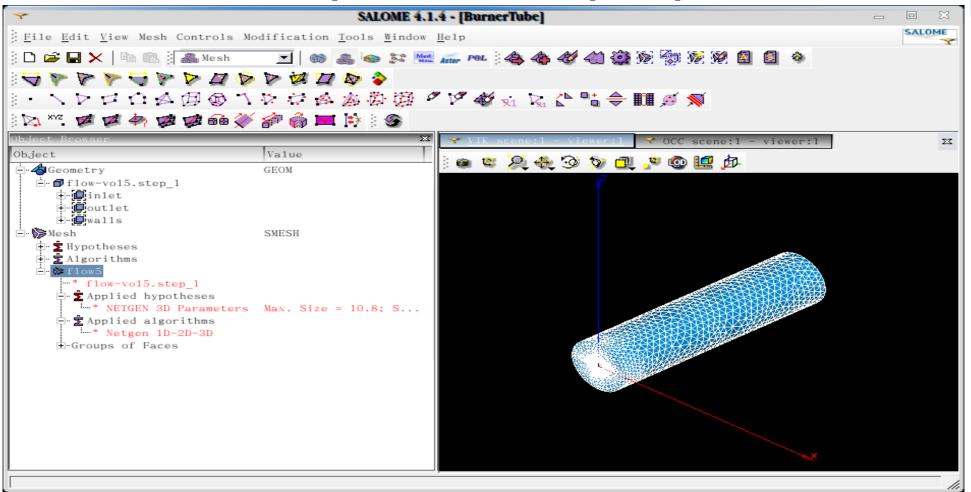

- SolidWorks for modeling the flow domain
- Salomé 4.1.4 for preparing geometry and meshing flow domain
- Code Saturne 1.4b for solving the simulation
- Paraview 3.4.0 for Post processing

Everything besides SolidWorks is run on Ubuntu 8.10 Linux – SolidWorks could easily be replaced by Salomé but laziness dictated I did it in SW at work.

The computer used is my trusty Zepto Znote 6014W, 1.7ghz Celeron, 1GB RAM

Model description and preparation

The simplified flow domain consists of a cylinder (Ø13mm, h 50mm) with a simplified inlet (remember, I don't care too much about what happens near and around the inlet).


This is exported from SolidWorks in STEP file format and assigned groups in Salomé geometry module, before it is meshed in the meshing module using the following parameters

Model description and preparation

NetGen 1D-2D-3D using the setting 'very fine' and 'quadratic' (2nd order) – the NetGen algorithm and geometry makes sure that the mesh is refined around the inlet and coarsens further up the flow domain. This yields the following mesh:

~	Mesh cor	nputation succee	d	S
Compute mesh -				
e 💱				
Name				_
flow5				
Mesh Infos —				_
	Total	Linear	Quadratic	
Nodes :	155940			
Edges :	405	0	405	
Faces :	5692	0	5692	
Triangles :	5692	0	5692	
Quadrangles :	0	0	0	
Polygons :	0			
Volumes :	111893	0	111893	
Tetrahedrons :	111893	0	111893	
Hexahedrons :	0	0	0	
Pyramids :	0	0	0	
Prisms :	0	0	0	
Polyhedrons :	0			
			C <u>l</u> ose	

Model description and preparation

Again, without getting too technical, a way to make sure your mesh is optimized for the simulation, you can calculate the Courant number and adjust your mesh accordingly. ((u*deltat)/deltax)<C

Preparing and running simulation

The mesh is exported in MED file format to the folder ~/Study/MESH/ and the Saturne GUI is started from ~/Study/CASE1/DATA/ using ./SaturneGUI

Once the GUI has loaded, it is time to enter the values (the options/tabs not mentioned is left at default if nothing is stated).

Under Solution domain load the mesh file exported from Salomé :

	Code_Saturne user interface	- O X
	<u>F</u> ile <u>T</u> ools Options	<u>H</u> elp
	🗹 🐜 🔚 39 🛠 🗗 😫 🕺	
A Street	Study name: BURNER	
MO-	Case name: CASE1 XML file name: burnertube.xml	
Calculation environm	ent MESHES PERIODIC SYRTHES STAND-ALONE BOUNDARIES COUPLING RUNNING	
Solution Domain		
Thermophysical mode		
Physical properties Additional scalars	flow5.med	
🖻 📂 Boundary conditions		
Definition of bounda		&
Calculation control	nditions	
 Calculation control Calculation control Numerical parameters 	5	
Calculation managem		
🗋 Start/Restart	Wern faces cutting: 🔶 on 🔺 off	
Length Prepare batch calcul	ation	

Next go into Thermophysical models and set the turbulence model to k-epsilon – This is a high Renolds number model since that's what I have here. Initialization is set as seen here:

	<u>H</u> elp
Study name: BURNER	
Case name: CASE1	
XML file name: burnertube.xml	
Calculation environment	
Solution Domain Zone selection all cells	
Lein Definition of the volume zones	
Calculation features	
Velocity initialization	
Thermal model VelocitU 0.0 m/s	
💼 Physical properties	
Additional scalars VelocitV 1.0 m/s Boundary conditions	
Definition of boundary regions Dynamic variables bound, cond, VelocitW 0.0 m/s	
Scalars boundary conditions	
Calculation control	
Calculation management	
Global initialization by reference velocity	
Prepare batch calculation	_
Reference velocity 1.0 m/s	

Next the physical properties of the fluid needs to be set:

Code_Saturne user interface □ ○ ○ ○ Elle Tools Options Help Image: Study name: Elle Tools Options Image: Study name: Case name: Case name: CASET XML file name: Durner tube xml Image: Study name: Case name: Calculation environment Case name: Image: Study name: Case name: Calculation for the volume zones Constant Image: Thermosphysical models Constant Image: Toremosphysical models Constant Image: Toremosphysicalmodels Constant	Elle ⊥ools Ogtions Help Image: Second Se		Cada Saturaa usar iatarfasa	X
Find properties Beference values Specific Heal Constant Casual value Constant Casual value Constant Constant Constant Casual value Constant Con	Find properties Reference value Substant Sectific Heal Constant Reference Cp 2220.0 J/kg/K		-	1
 Identity and paths Definition of the volume zones Thermophysical models Calculation features Mobile mesh Turbulence models Thermal model Initialization Physical properties Reference values Fluid properties Gravity, hydrostatic pressure Additional scalars Definition of boundary regions Definition of boundary conditions Calculation control Numerical parameters Calculation management Start/Restart 	Identity and paths Density Solution Domain Definition of the volume zones Thermophysical models constant □ Calculation features Mobile mesh Turbulence models Viscossity Thermal model Initialization Initialization constant □ Physical properties constant □ Reference values constant □ Thuid properties specific Heat Additional scalars specific Heat Optimic variables bound, cond. Scalars boundary conditions Calculation control constant □ Numerical parameters constant □ Calculation management Start/Restart		Study name: BURNER Case name: CASE1	Help
Additional scalars Boundary conditions Definition of boundary regions Dynamic variables bound, cond. Scalars boundary conditions Calculation control Numerical parameters Calculation management Memory Management Start/Restart	Additional scalars Boundary conditions Definition of boundary regions Dynamic variables bound. cond. Scalars boundary conditions Calculation control Numerical parameters Calculation management Memory Management Start/Restart	 Identity and paths Solution Domain Definition of the volume zones Thermophysical models Calculation features Mobile mesh Turbulence models Thermal model Initialization Physical properties Reference values 	constant Reference p 0.656 <i>Viscosity</i> Constant Reference u 1.1e-05	
	a da anti-anti-anti-anti-anti-anti-anti-anti-	Gravity, hydrostatic pressure Additional scalars Boundary conditions Definition of boundary regions Dynamic variables bound, cond. Scalars boundary conditions Calculation control Numerical parameters Calculation management Memory Management Start/Restart	constant Reference Cn 2220.0	J/kg/K

Definition of boundary regions are set next – the names of the boundary regions corresponds to the group names assigned in Salomé.

	Code_Saturne user	interface	_ 0 X
<u>File</u> Tools	O <u>p</u> tions		<u>H</u> elp
	-	P. 57	
	3 🛠 🗗 🖇		
		Study name: BURNER	
		Case name: CASE1	
Mut.		XML file name: burnertube.xi	ml
Calculation environment	Definition of boun	dary regions	<u> </u>
Solution Domain	Label	Zone Nature	Localisation
Thermophysical models	walls	3 wall	walls
Calculation features	inlet	1 inlet	inlet
Mobile mesh Turbulence models	outlet	2 outlet	outlet
Thermal model			
Initialization			
Physical properties			
Reference values Fluid properties			
Gravity, hydrostatic pressure			₫
产 Additional scalars	81		2
Definition and initialization			
L Physicals properties	Label walls		
Definition of boundary regions	7		
Dynamic variables bound. cond.	Zone 3		
Calculation control	Nature	wall 🗖	
Numerical parameters			
😤 Calculation management	Localisation walls		
Memory Management	,		
Start/Restart		Create Modify	Delete
			- 61
	Import groups and	l references from Prepro	cessor listing 🥨 🚽

Entering the calculated velocity in the positive Y-direction in Dynamic variables bound. cond.

	0	ode_Saturne u	ser interface	e		-	
	<u>F</u> ile <u>T</u> ools	O <u>p</u> tions					<u>H</u> elp
	📓 🐜 📄	3 🛠 🎜	😵 🗐				
			Study name:	BURNER	1		
			Case name:	CASE1			
Miller.			XML file nan	ne: burnertuk	be.xml		
Calculation environme	ent	Dynamic variab	les bound. co	ond.			
Solution Domain	ime zones	Label	Zone	Nature		Localisation	4
👝 Thermophysical mode		walls	3	wall		walls	
Calculation features		inlet	1	inlet		inlet	
Turbulence models							
- Thermal model							
Physical properties							
Reference values							
Fluid properties	pressure						∀
📂 Additional scalars		5					
Definition and initiali							-
Boundary conditions			Veloci	ty compone	ents u	-1	
Definition of boundar							
Dynamic variables bo			U	0.0	m/s		
Calculation control			v F	33.0	m/s		
Numerical parameters P Calculation management			Ľ	00.0	11/2 3		
Memory Managemen			W	0.0	m/s		
Start/Restart	ation						
		Turbulence					
			Calculation b	y hydraulic	diameter	-	
		_					
			Hydraulic dia	umeter 0.0	1019	m	∇

Since this is a steady state condition, this is what I left it at in Steady Management.

Under Output control I set it to Post-processing every 'n' time step to 1 and select Ensight Gold as the output format (This is so ParaView can post-process the result):

	Code_Saturne user interface	_ O X
Ei	ile <u>T</u> ools O <u>p</u> tions	<u>H</u> elp
	í ଲ 📙 30 🛠 🗗 🔗 🚀	
	Study name: BURNER	
ACT -	Case name: CASE1	
(III)	XML file name: burnertube.xml	
👝 Calculation environment		
Identity and paths		
Solution Domain	Output listing at each time step	
Definition of the volume Thermophysical models	zones	
Calculation features	Post-processing	
Mobile mesh		
Turbulence models Thermal model	Post-processing every 'n' time steps 🥏 🔤	1
Initialization		
Physical properties	Fluid domain post processing	
Reference values Fluid properties	Domain boundary post processing	
Gravity, hydrostatic pres		
Additional scalars	Type of post processing for mesh fixed	=1
Physicals properties		
📂 Boundary conditions	Execution Execution and	
Definition of boundary re		
Scalars boundary conditi		
Calculation control	format binary 🔤	
Steady management Output control		
C Solution control	polygons to display 💴	
Numerical parameters		
Calculation management	polyhedra to display 💴	
🗋 Start/Restart	his cardier	
Prepare batch calculation	n big_endian 📕	

Once everything is set up, theres only one thing left: Load the 'runcase' file under Prepare batch calculation and press Code Saturne batch running:

		Code_Saturn	ie user in	terface		- O X
E	<u>-</u> ile <u>T</u> ools	O <u>p</u> tions				<u>H</u> elp
	🛛 ଲ 🛛	- 3 🛠	a 🔗	~		
				dy name: BURNER		
				e name: CASE1		
				L file name: burnertube.	×ml	
11. ···	[
Calculation environment	_	Computer S	Selection			
Identity and paths Solution Domain		·				
Definition of the volume	zones			Workstation	-	
👝 Thermophysical models						
Calculation features						
· Mobile mesh			Select t	he batch script file	runcase	
Thermal model						
Initialization						
产 Physical properties		Prepare bat	tch calcula	ation		
- Reference values						
Fluid properties		I	Number of	processors	1	
Additional scalars						
Definition and initializat	tion		User files		a	
Physicals properties						
Boundary conditions	agiono				- 1	
Definition of boundary r	-		Advance	d options	2	
Scalars boundary condit				L	1•	
Calculation control						
Steady management						
Output control				Code_Satur batch	ne	
Numerical parameters				running		
Equation parameters						
Global parameters						
Calculation management						
Start/Restart						
Prepare batch calculatio	m					

This launches the calculation and outputs the temporary results in ~/tmp_saturne and the finished results in ~/Study/CASE1/RESU As the calculation runs, issueing the terminal command tail -qf ~/tmp_saturne/Study.CASE1.date/listing will give info on the progress and convergence of the calculation:

If everything went smoothly, Code_Saturne rewards you with a "**Normal** Simulation Finished" and one can move on to...

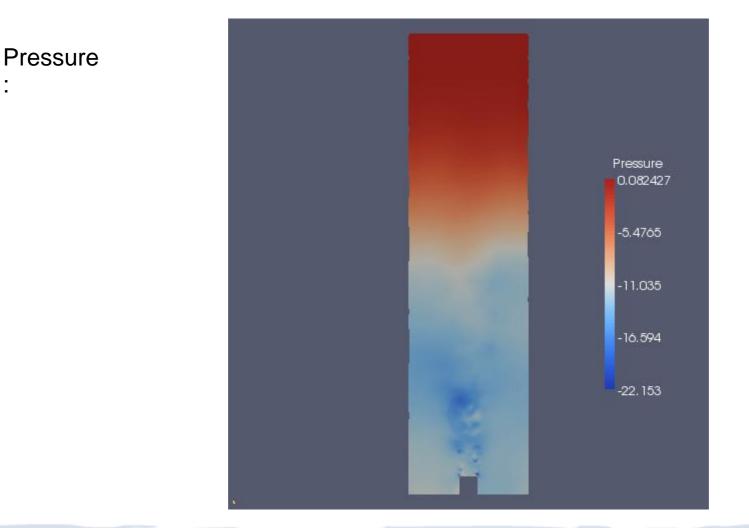
Fire up ParaView and select

 $\textit{File} \rightarrow \textit{open} \rightarrow \textit{Study/CASE1/RESU/CHR}. \textit{ENSIGHT}. \textit{date/chr}. \textit{case}$

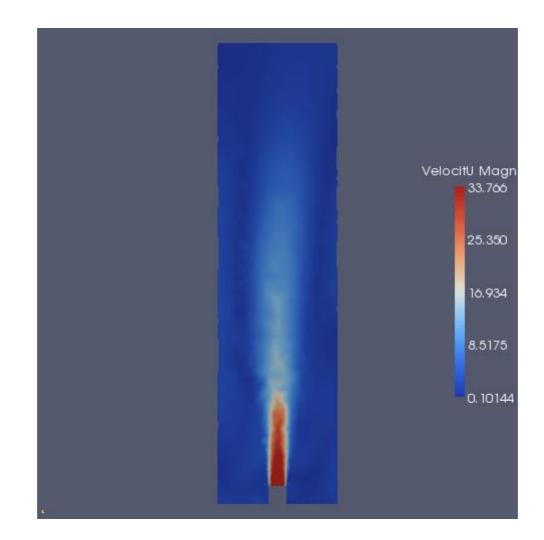
Click 'apply'

and select

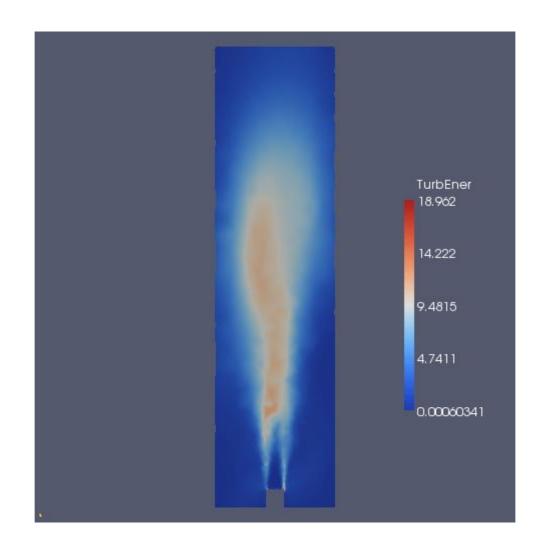
Filters \rightarrow Alphabetical \rightarrow Cell data to point data

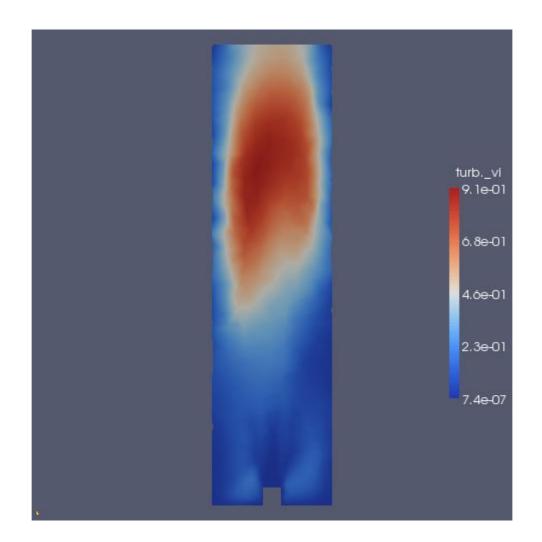

and

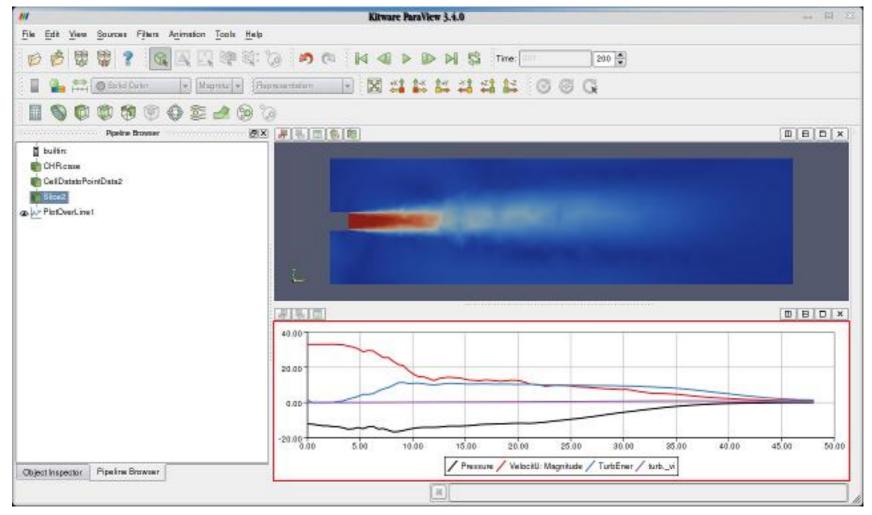
Filters \rightarrow Common \rightarrow Slice and de-select show plane select Z Normal –


click apply

Cell data to point data will give a much more smooth representation of the fields and allow showing the velocity field as streamlines.


Images are captured at timestep 200 where we have a reasonably steady state:


Velocity


Turbulent energy

Turbulence – magnitude

ParaView set up with Plot over line to show values along the X axis:

So after post processing the simulation, what conclusions can be drawn? Velocity is indeed 33m/s as was the initial condition. The low pressure zone around the base of the jet is ~-22Pa, this is what I'm interested in, since this is what I plan to measure later on in the practical approach. The zones for turbulence and turbulent energy isn't that surprising at all – I'll keep that in mind for when I have to modify the burner tube later on.

So now I've gotten the simulation to finish and have reasonable derivatives(?), I proceed to do a practical test on the burner tube. First I want to measure the gas flowing into the burner tube; this is done with a flow meter connected between the gas bottle and the regulator. The results of the measurement is used in the MathCAD document both to hold up against the technical document on the gas burner and to control my theoretical calculation.

In this image the middle flowmeter is used and if you squint, you can see the ball hovering at around 6[l/min].

During the run of the flow measurement, I attach a manometer to the low pressure side of the regulator to make sure it has the proper inlet pressure: 1[kPa]

Next up is the actual measurement of the burner tube. I have attached a small fitting to the aeration port and sealed the ports with electrical tape. This should hopefully emulate the simulation setup.

Turning on the gas and letting it flow free through the burner tube with a micro-manometer attached, gave the following reading:

Conclusion

Goal archived, I have a model on which I can build further on. Code_Saturne can be a harsh mistress. I've have spent many many hours tweaking the shape of the mesh for a seemingly simple numerical analysis. Especially the inlet takes much care to model – the initial 'backlash' of the fluid as it enters the tube (as seen in the animations) has given me much grievance. The trick in this case since I was only interested in low pressures zone in the steady state, was to let the inlet protrude into the chamber to allow for the 'backlashing' – otherwise I got wildly inaccurate if any, results. CFD requires you to know exactly what you want to retrieve from the simulation and under what conditions. It simply does not converge if you don't have some idea of what mesh size, inlet velocity etc. etc. to apply. This takes much experimentation, at least for me since I don't have a formal background in fluid dynamics.

Don't do CFD on a 1.7ghz celeron if you have the choice – it will wear you out.