Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 1/10

Organization (S): EDF-R & D/AMA
Handbook of Descriptif Informatique
D4.04 booklet: -
Document: D4.04.01

Structure of Données CATA_ELEM

1 General information

The structure of data CATA_ELEM gathers all the information provided in the files of
catalogs of finite elements [D3.02.01].

This SD is created by the procedure of update of code MAJNEW and is backed up in the base
elements. This base is recopied in the base of the user during ordering DEBUT.
objects which make this SD are then accessible in reading by all the operators from the code.

There is only one SD of the type CATA_ELEM; its name is “&CATA”.

SD CATA_GRANDEUR contains
information of the catalog
compelem/grandeur_simple__.cata

SD CATA_TYPE_MAILLE contains
information of the catalog
compelem/type_maille__.cata

SD CATA_OPTION contains
information of the catalogs
options/* .cata

SD CATA_TYPE_ELEM contains
information of the catalogs
typelem/* .cata

SD CATA_PHEN_MODE contains
information of the catalog
compelem/phenomene_modelisation__.cata

Note:

All objects described in this document (except the 4 &CATA.TE.DIM_GEOM objects,
&CATA.TE.OPTTE, &CATA.TE.TAILLMAX and &CATA.TE.NBLIGCOL) are created by
scripts python of Lecture_Cata_Ele/* .py. These scripts generate a file ASCII
containing these objects which are then read again by routine FORTRAN lccata.f. This
routine calculates the 4 missing objects then.
Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 2/10

2 Tree structures

CATA_ELEM (K5)::=record
“.CL”: CATA_COM_LIBR
“.GD”: CATA_GRANDEUR
“.TM”: CATA_TYPE_MAILLE
“.OP”: CATA_OPTION
“.TE”: CATA_TYPE_ELEM
“$VIDE”: CATA_PHEN_MODE

CATA_COM_LIBR (K8)
::=record
“.COMLIBR”
:

OJB
TESTSTEMXÇ
V
K80
NAKED
LONG=1

CATA_GRANDEUR (K8)
::=record
“.DESCRIGD”


: OJB TESTSTEMXÇ V I NO
LONG=7
“.NOMCMP”
:

OJB
TESTSTEMXÇ
V
K8
NO
“.NOMGD”
:

OJB
S
NR
K8
“.TYPEGD”
:

OJB
S
V
K8

CATA_TYPE_MAILLE (K8)
::=record
“.NBNO”
:

OJB
TESTSTEMXÇ
V
I
NO
LONG=1
NBOBJ=
nb_tm
“.NOMTM”
:

OJB
S
NR
K8
LONG=
nb_tm
“.TMDIM”
:

OJB
S
V
I
LONG=
nb_tm
“.NOELRF”
:

OJB
S
NR
K8
LONG=
nb_elrefe
“.NOFPG”
:

OJB
S
NR
K16
LONG=
nb_fam_pg
“.TMELRF”
:

OJB
S
V
I
LONG=
nb_elrefe
“.TMFPG”
:

OJB
S
V
I
LONG=
nb_fam_pg

CATA_OPTION (K8)::=record
“.DESCOPT”


: OJB TESTSTEMXÇ V I
NO
“.NOMOPT”
:

OJB
S
NR
K16
“.OPTPARA”
:

OJB
TESTSTEMXÇ
V
K8
NO


CATA_TYPE_ELEM (K8)::=record
“.DIM_GEOM”


: OJB S V I
“.MODELOC”


: OJB TESTSTEMXÇ V I
NO
“.NBLIGCOL”


: OJB S V I
“.NOMMOLOC”:

OJB
S
NR
K24
“.NOMTE”
:

OJB
S
NR
K16
“.OPTMOD”



: OJB TESTSTEMXÇ V I
NAKED
“.OPTNOM”



: OJB TESTSTEMXÇ V K8
NAKED
“.OPTTE”




: OJB S V I
“.TAILLMAX”


: OJB S V I
“.TYPEMA”
:

OJB
S
V
K8
“.NBELREFE”:

OJB
S
V
I
LONG=2 * nb_te
“.NOELREFE”:

OJB
S
V
K8
“.PNLOCFPG”:

OJB
S
V
K32
LONG=nb_loc_fpg
“.NOLOCFPG”:

OJB
S
V
I
LONG=nb_loc_fpg
“.NOFPG_LISTE”

: OJB S NR K24
“.FPG_LISTE”


: OJB TESTSTEMXÇ V K8
NAKED
“.CTE_ATTR”

: OJB S V K16

LONG=2 * nb_attributs

CATA_PHEN_MODE (K5)::=record
“.PHENOMENE”:

OJB
S
NR
K16
“.ACOUSTIQUE .MODL”
: OJB S NR K16
“.ACOUSTIQUE”


: OJB TESTSTEMXÇ V I NO
“.MECANIQUE .MODL”
: …



Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 3/10


3
Contents of the OJB

3.1 Notations,
dimensions

nb_te
numbers type_element catalog
nb_tm
type_maille catalog numbers
nb_op
option of the catalog numbers
nb_gd
size of the catalog numbers

3.2 SD
CATA_GRANDEUR: “&CATA.CL”

CATA_COM_LIBR (K8)
::=record

“.COMLIBR”


: OJB TESTSTEMXÇ V K80

NAKED LONG=1

.COMLIBR:
This object contains the “free comments” which one can write in certain catalogs enters
<< blah. >>. Currently, one can write some in the catalog grandeur_simple__ and
in the catalogs of options.
A free comment is a contiguous continuation of K80 stored in object .COMLIBR. It is necessary then
to store (elsewhere!) the number of lines and the number of the 1ère line of the free comment.

3.3 SD
CATA_GRANDEUR: “&CATA.GD”

CATA_GRANDEUR (K8)
::=record

“.DESCRIGD”


: OJB TESTSTEMXÇ V I

NO LONG=7

“.NOMCMP”


: OJB TESTSTEMXÇ V K8

NO

“.NOMGD”



: OJB S NR K8

“.TYPEGD”


: OJB S V K8

.NOMGD:

Pointer of name allowing to associate all the sizes (simple or elementary) one
number. It is this number which we will identify thereafter with the size.

Note:

Collections .DESCRIGD and .NOMCMP are numbered in the same way that .NOMGD.

.NOMCMP:

Collection of V (K8). One reaches it by the number of the size: Gd, or by its name.
All the simple sizes have all their named CMP. One thus finds opposite Gd,
the list of all the names of the Gd CMP. If the size is elementary, there is nothing opposite
of Gd.

.TYPEGD: V (K8).
Gd ---> K8: type_scalaire (size) (R, I, C, K8, K16, K24)
Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 4/10

.DESCRIGD: contiguous collection of V (I) length 7.
Gd ---> V (I): descriptor of the size Gd.

V (1): code_gd
1: simple size
3: elementary size (vector)
4: elementary size (matrice_sym)
5: elementary size (matrice_rectangle)
V (3): n_ec
numbers the entier_codés necessary ones to describe the CMP of
size.
V (4): gd_ligne
size “line” for the elementary sizes “vector” and
“matrix”.
V (5): gd_colonne
size “column” for the elementary sizes “stamps”.
V (6): nblcom
A number of lines of the free comment associated the size Gd
V (7): indcom
Index in `&CATA.CL.COMLIBR `of the 1ère line of the comment
free associated the size Gd

3.3 SD
CATA_TYPE_MAILLE: “&CATA.TM”

This catalog contains the information contained in the catalog type_maille__.cata

That is to say:
nb_tm: type_maille numbers
nb_elrefe: a number of ELREFE
nb_fam_pg: a number of families of points of Gauss

CATA_TYPE_MAILLE (K8)
::=record
“.NBNO”



: OJB TESTSTEMXÇ V I NO LONG=1 NBOBJ= nb_tm
“.NOMTM”




: OJB S NR K8 LONG=
nb_tm
“.TMDIM”




: OJB S V I LONG= nb_tm
“.NOELRF”



: OJB S NR K8 LONG=
nb_elrefe
“.NOFPG”




: OJB S NR K16
LONG= nb_fam_pg
“.TMELRF”



: OJB S V I
LONG= nb_elrefe
“.TMFPG”




: OJB S V I
LONG= nb_fam_pg

.NOMTM: This pointer of name contains the names of the type_maille (K8)
.NOELRF: This pointer of name contains the names of the ELREFE (K8)
.NOFPG: This pointer of name contains the names of the families of points of Gauss.
The name of a family of points of Gauss (K16) is obtained by concaténant the name of the ELREFE (K8) and
the surname in this ELREFE (K8). For example: “HE8 FPG1”
.NBNO: NBNO (i_tm): a number of nodes for the type_maille i_tm
.TMDIM: TMDIM (i_tm): topological dimension of the type_maille (0/1/2/3)
.TMELRF: TMELRF (i_elrf): number of the type_maille associated the ELREFE i_elrf.
.TMFPG: TMFPG (i_fpg): a number of points of Gauss for the i_fpg family.
Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 5/10

3.4 SD
CATA_OPTION: “&CATA.OP”

CATA_OPTION (K8)
::=record
“.DESCOPT”


: OJB TESTSTEMXÇ V I

NO
“.NOMOPT”



: OJB S NR K16
“.OPTPARA”


: OJB TESTSTEMXÇ V K8 NO

.NOMOPT:

Pointer of name (K16) making it possible to associate has all the options a number that one
will confuse with the option: opt.

.DESCOPT:

Contiguous collection of V (I).
opt ---> DESCOPT (opt) = V
The length of V is 6+3 * (nbin+nbou) with:
nbin: a number of parameters “in” option
nbou: a number of parameters “out” of the option

V (1): 1
useless
V (2): nbin
a number of parameters “in”
V (3): nbou
a number of parameters “out”
V (4): 1
useless
V (4+1):Gd (in, 1)
size associated with the parameter “in” 1
V (4+2):Gd (in, 2)
size associated with the parameter “in” 2


V (4+nbin+1):Gd (out, 1)
size associated with the parameter “out” 1


V (4+nbin+nbou):
size associated with the last parameter “out”

Gd (out, nbou)

V (4+nbin+nbou+1): nblcom
A number of lines of the general free comment associated
the option.
V (4+nbin+nbou+2): indcom
Index in `&CATA.CL.COMLIBR `of the 1ère line of
general free comment associated the option

Then the free comments associated with the various parameters (“in” or “out come”) with
the option:

V (6+nbin+nbou+1): nblcom
A number of lines of the free comment associated 1st
parameter “in”
V (6+nbin+nbou+2): indcom
Index in `&CATA.CL.COMLIBR `of the 1ère line of
free comment associated the 1st parameter “in”


V (6+3 * (nbin+nbou) - 1): nblcom
A number of lines of the free comment associated
last parameter “out”
V (6+3 * (nbin+nbou)): indcom
Index in `&CATA.CL.COMLIBR `of the 1ère line of
free comment associated the last parameter “out”

.OPTPARA

Contiguous collection of V (K8).
opt ---> NOMPARA (opt) = V

V (1): will nom_para (in, 1)
name of the parameter “in” number 1
V (2): will nom_para (in, 2)
name of the parameter “in” number 2


V (nbin+nbou): will nom_para (out, nbout)
name of the last parameter “out”
Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 6/10

3.5 SD
CATA_TYPE_ELEM: “&CATA.TE”

CATA_TYPE_ELEM (K8)
::=record
“.DIM_GEOM”


: OJB S V I
“.MODELOC”


: OJB TESTSTEMXÇ V I
NO
“.NBLIGCOL”


: OJB S V I
“.NOMMOLOC”


: OJB S NR K24
“.NOMTE”




: OJB S NR K16
“.OPTMOD”



: OJB TESTSTEMXÇ V I
NAKED
“.OPTNOM”



: OJB TESTSTEMXÇ V K8
NAKED
“.OPTTE”




: OJB S V I
“.TAILLMAX”


: OJB S V I
“.TYPEMA”



: OJB S V K8
“.NBELREFE”


: OJB S V I
LONG=2 * nb_te
“.NOELREFE”


: OJB S V K8
“.PNLOCFPG”


: OJB S V K32
LONG=nb_loc_fpg
“.NOLOCFPG”


: OJB S V I
LONG=nb_loc_fpg
“.NOFPG_LISTE”

: OJB S NR K24

“.FPG_LISTE”


: OJB TESTSTEMXÇ V NAKED K8


“.CTE_ATTR”

: OJB S V K16
LONG=2 * nb_attributs

3.5.1 Dimensions

.NBLIGCOL: vector of entireties length 6: V.

V (1)
nb_op: a number of options
V (2)
nb_te: numbers type_element
V (3)
nb_te: numbers type_element
V (4)
nb_gd: a number of sizes
V (5)
nb_te: numbers type_element
V (6)
nb_gd: a number of sizes

3.5.2 Name, TYPE_MAILLE, geometrical dimension, families of integration of
TYPE_ELEMENT

.NOMTE: Pointer of name allowing to associate type_element a number (of 1 to N) which
allows to identify it: you.

.TYPEMA: vector (K8) length nb_te: V
V (you): name of the type_maille associated type_element.

.NBELREFE: vector (I) length 2 * nb_te: V
V (2 * (you-1) +1): a number of ELREFE for type_element you.
V (2 * (you-1) +2): address in .NOELREFE of the 1st ELREFE for type_element
you.

.NOELREFE: vector (K8: names of the ELREFE of all type_element.
V (.NBELREFE (2 * (you-1) +2+k-1)) : name of the kth ELREFE of type_element you.
Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 7/10

.PNLOCFPG:
Pointer of name allowing to associate a “local family of points of Gauss” a number which
as index in the object “&CATA.TE.NOLOCFPG will be used”. A “local family of points of Gauss” is
identified by a name (K32) obtained while concaténant: the name of type_element (K16), the name of
the ELREFE (K8) and the surname (K8).
For example:
ENTETE__ ELEMENT__ THER_PENTA6_D MAILLE__ PENTA6
ELREFE__ PE6 GAUSS__ RIGI=FPG1
The “local family of points of Gauss” will be called: “THER_PENTA6_D PE6 RIGI”

Caution:

1) the pointers of names JEVEUX being limited to K24, object .PNLOCFPG is not a truth
pointer of names. It is simply about a vector of K32. To make the equivalent of
JENUNO, it is necessary to traverse the vector until finding the name sought. The index of the name in
vector is the sought number.
2) Certain families are “simple here” (: RIGI) of others are “lists” (see paragraph
below).

.NOLOCFPG:
Vector of entireties allowing “to point” towards the .TM.NOFPG objects and .TM.TMFPG
For a “simple” family: .NOLOCFPG > 0
For a family “lists”: .NOLOCFPG = 0

In short, the use of objects .PNLOCFPG and .NOLOCFPG will be done in FORTRAN (for one
“simple” family) by:
NOFLPG=TYPELE//ELREFE//FAMILL (“local” name of a family of PG (K32))
NUFLPG=INDK32 (“&CATA.TE.PNLOCFPG”, NOFLPG)
NUFGPG=&CATA.TE.NOLOCFPG (NUFLPG)
NOFGPG=&CATA.TM.NOFPG (NUFGPG) (“total” name of the family (K16))
NBPOIN=&CATA.TM.TMFPG (NUFGPG) (a number of points of the family)

.DIM_GEOM: vector (I) length nb_te: V
V (you): geometrical dimension associated type_element
/0: type_element does not know size GEOM_R
/1: type_element knows CMP DX of size GEOM_R
/2: type_element knows the CMP DY of size GEOM_R
/3: type_element knows CMP DZ of size GEOM_R

3.5.2.1 Families of PG “lists”

One can define in the catalogs of type_element families which are lists of families
existing (“simple”).

For example:
ENTETE__ ELEMENT__ MAILLE__ HEXA20
ELREFE__ H20 GAUSS__ RIGI=FPG27 MASS=FPG8 FPG_LISTE__ MATER= (RIGI, FARMHOUSE)

For type_element the, the family called MATER is a family of 35 items (27+8). 3rd
not RIGI is the 3rd point of MATER. the 3 point of MASS is the 30ème not MATER.

One stores this information in the 2 following objects:

.NOFPG_LISTE: OJB S NR K24
It is a pointer of names making it possible to point in 2nd object (.FPG_LISTE)
The name of a family “lists” (NOFPGL2) is K24:
NOFPGL2=NOMTE (1:16)//NOFPGL (1:8) if NOFPGL is the name given to the family “lists” (MATER
in our example).
Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 8/10

.NOFPG_LISTE (NOFPGL2) - > KFPGL

.FPG_LISTE: OJB TESTSTEMXÇ V NAKED K8 ()
The access to this collection is done thanks to the preceding object (.NOFPG_LISTE).
.FPG_LISTE (KFPGL) = V (K8)
This vector of K8 is dimensioned with nb_fam +1
V (ifam): surname ifam of the list.
V (nb_fam +1): name of the elrefe.

For our example: V= (“RIGI”, “FARMHOUSE”, “H20”)

3.5.3 Modes
buildings

One decides type_element to identify the local modes of all by an entirety: moloc. This entirety is
single for each couple (type_element, definition of local mode)

.NOMMOLOC:
Pointer of name. (K24)
With each made up name: nom_te//nom_mode one can associate a number: moloc.
ex: “DKT”//“NGEOMER” <----> 67.
moloc varies from 1 with nb_mode_locaux (total on all type_element). moloc serves as
pointer of access to collection .MODELOC

.MODELOC:
Contiguous collection of V (I).
moloc ---> V (I)

V (1): code
1: ELEM__
2: ELNO__
3: ELGA__
4: VECTEUR__
5: MATRICE__
V (2): Gd
size associated with the mode_local
V (3): nb_scal
a number of scalars (I, R.) representing the local mode
(i.e length of the local field).

If code = EL. :_ _
V (4): nb_pt

nb_pt is the number of points of localization of the field on the element:
·
for 1 local mode of type ELEM__, nb_pt = 1,
·
for 1 local mode of type ELNO__, nb_pt is the number of nodes of the element,
·
for 1 local mode of type ELGA__, nb_pt is the number of points of Gauss of
the element.

One adds 10000 to the absolute value of nb_pt to possibly state that them
various points of the field do not have same representation (ELNO__/DIFF__).

If ELNO__/DIFF__:
V (4+1)
beginning of the descripteur_grandor of item 1
….

V (4+n_ec * (i-1) +1)
beginning of the descripteur_grandor of item I
If not:
V (4+1) and the continuation are the descripteur_grandor (Gd).

if code = ELGA__:
/V (4+n_ec+1): +NUFGPG if this family is “simple”.
/V (4+n_ec+1): - KFPGL if this family is “list”.
Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 9/10

NUFGPG is the number of the family “simple” partner with the mode_local. Pointer in
the object “&CATA.TM.NOFPG”.

KFPGL is the number of the family “lists” associated with the mode_local. Pointer in the object
“&CATA.TE.FPG_LISTE”.

If code = VECTEUR__ or MATRICE__
V (4): moloc (line)
If code = MATRICE__
V (5): moloc (column)

.TAILLMAX: vector (I) length nb_te: V

V (you): Max (.MODELOC (3)) for all the local modes of type_element you

3.5.4 Options calculated by type_element

.OPTTE: Object simple V (I).

V ((you-1) * nb_op+op) ---> i_optte: number of the optte (OPTion-Type_Element) associated
CALCUL (opt, you).
This number i_optte is used to point in collections .OPTMOD and .OPTNOM.

.OPTMOD: Contiguous collection of V (I).

This collection describes the local modes of the elementary options.

i_optte ---> V (I)

V (1)
num_calc
number of elementary calculation
V (2)
nbin
parameter numbers “in”
V (3)
nbout
parameter “out numbers”
V (3+1)
moloc_in_1
local mode of the first parameter “in”
V (3+2)
moloc_in_2
local mode of the second parameter “in”



V (3+nbin+1)
moloc_ou_1
local mode of the first parameter “out”



V (3+nbin+nbou) moloc_ou_nbout
local mode of the last parameter “out”

.OPTNOM:

Contiguous collection of V (K8). This collection describes the names of parameters of the options
elementary.

i_optte ---> V (K8)

V (1)
will nom_para (in, 1)


V (nbin+1)
will nom_para (out, 1)


V (nbin+nbou)
will nom_para (out, nbout)

Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A

Code_Aster ®
Version
8.1
Titrate:
Structure of Données CATA_ELEM


Date:
01/12/05
Author (S):
J. Key PELLET
:
D4.04.01-C Page
: 10/10

3.5.5 Object
“.CTE_ATTR”

.CTE_ATTR: Collection of V (K16) length nb_te. This collection contains the attributes of
all type_element.

.CTE_ATTR (you): V (K16) LONG=2 * nb_attribut
V (2 * (iattr-1) +1): name of the attribute of number iattr
V (2 * (iattr-1) +2): value of the attribute of number iattr

Note:

To find the value of an attribute of name nom_attr, one must traverse this vector until
to find this name with an odd index.

3.6 SD
CATA_PHEN_MODE: “&CATA”

CATA_PHEN_MODE (K5)::=record
“.PHENOMENE”




: OJB S NR K16
“.ACOUSTIQUE .MODL”

: OJB S NR K16
“.ACOUSTIQUE”



: OJB TESTSTEMXÇ V I NO
“.MECANIQUE .MODL”

: OJB S NR K16
“.MECANIQUE”




: OJB TESTSTEMXÇ V I NO
“.THERMIQUE .MODL”

: OJB S NR K16
“.THERMIQUE”




: OJB TESTSTEMXÇ V I NO

.PHENOMENE: S NR K16

This pointer of names contains all the names of phenomenon read in the catalog:

Today:

·
“MECANIQUE”
·
“THERMIQUE”
·
“ACOUSTIQUE”

It is not used to point in a collection.

“.ACOUSTIQUE .MODL”: Names of modelings of phenomenon ACOUSTIQUE.
“.MECANIQUE .MODL”: Names of modelings of phenomenon MECANIQUE.
“.THERMIQUE .MODL”: Names of modelings of phenomenon THERMIQUE.

Other objects:

The other objects of the structure of donnéées CATA_PHEN_MODE are not “suffixes” “into hard”
in documentation. It is an exception (historical!) with the principles of the tree structure. One creates
as many additional objects of phenomena read. These objects have as complete names:

“&CATA.”//nom_de_phenomene

Let us take the example of:

“.MECANIQUE”

: OJB TESTSTEMXÇ V I

NO LONG= nb_tm + 2

It is a collection of V (I), named by possible modelings for this phenomenon.
With a given modeling, a vector of entireties V corresponds.

For i_tm of 1 with nb_tm:
V (i_tm): number of type_élément associated the type nets i_tm, for modeling.
If V (i_tm) =0: the type_maille i_tm type_element did not associate for
modeling.
V (nb_tm +1): toplogic dimension of the “principal” elements of modeling: 0/1/2/3
V (nb_tm +2): dimension of physical space bathing modeling: 2/3
Handbook of Descriptif Informatique
D4.04 booklet: -
HT-66/05/003/A