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   1 Introduction part one

 1 Introduction part one

In the interest of helping new users learn about Code Aster® and improve my own 
knowledge, I've decided to translate and update the now aging plasticity tutorial originally 
written by Paul Carrico in 2007. He released the document as GPL, and as a derivative 
this updated version is also released as GPL. I've reused as much of his material as 
possible, and created my own where needed (results etc.) as well as added a few 
paragraphs and explanations here and there. In the translation process some points or 
facts might have been lost or might be downright wrong, in the event of confusion seek out 
the original document.

Only this document and content within is to be considered GPL; rights remain with the 
respective owners of the software used throughout the tutorial.

Claus Andersen � March 2011

 2 Introduction part two

In this tutorial we will study the plastic deformation of an aluminum wheel rim. The use of 
cyclic symmetry will be introduced and the use of POURSUITE to break the study into two 
parts: calculation and post-processing. 

Calculations are done with Code Aster® 10.3 Stable release
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   3 Preparation of the model

 3 Preparation of the model

Figures 3.1 and 3.2 shows the geometry we will be working with and how the model is 
symmetric at 120°
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   4 The mesh

 4 The mesh

The mesh is mainly comprised of second order hexahedrals. See figures 4.1, 4.2 and 4.3
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   4 The mesh
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   5  Objective of modelization

 5  Objective of modelization

The imposed displacement at the wheel hub is somewhat a simplification of a real world 
scenario. If the simulation were to be closer to real world conditions, contact conditions 
should be introduced at the wheel hub and the support boundary conditions (extremities of 
the wheel rim) to allow for local rotation as the displacement is enforced.

In this case, it will result in an overestimation of the stresses and strains. 

We seek to determine:

1. The elasto-plastic stress field resulting from the displacement imposed

2. Plastic strain resulting from the displacement imposed

 6 Procedure of the simulation

As always with larger studies, it makes sense to break the simulation into two parts:

1. The mechanical non-linear calculation (STAT_NON_LINE � [U4.51.03])

2. Post-processing the data saved from stage 1

This prevents the need to re-run the mechanical calculation just to change a parameter in 
the post-processing stage. In this particular case the mechanical calculation takes several 
hours, depending on the system, whereas the post-processing stage takes mere minutes.

 6.1 Stage 1: Mechanical calculation

F comm ./rim_solution.comm D 1

F mmed ./rim.med D 20

R base ./base R 0

F mess ./rim_solution.mess R 6

F resu ./rim_solution.resu R 8

 6.2 Stage 2: Post-processing of data � MED format

F comm ./rim_postprocess.comm D 1

F rmed ./rim_resu.med R 80

R base ./base D 0

F mess ./rim_postprocess .mess R 6

F resu ./rim_postprocess .resu R 8

F dat ./rim_curve.dat R 51

Above demonstrates the two setups in ASTK®; be sure to take special note of the letter 
denoting whether a file/folder is a result or data. A wrong setting in the post-processing 
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   6.2 Stage 2: Post-processing of data � MED format

stage will render the data calculated in the mechanical stage, useless.

 7 Chronological list of the stages

With the help of the command file editor EFICAS®, the following commands are applied:

� Loading the mesh

� Defining and assigning the material

� Assigning a finite element model (3D)

� Assigning cyclic symmetry

� Defining and assigning boundary conditions and load

� Solution

� Separate post-processing

 8 Note on units in Code Aster

Code Aster does not have a unit system such as SI or Imperial; it is entirely up to the user 
to provide a coherent set of units. In this particular case mmNS is used, which means 
length is in mm, and pressure is in MPa (N/mm²) 

 9 Stage 1 - The command file

 9.1 Loading the mesh and defining the finite element model

DEBUT();

#Read the mesh - name the concept 'Mesh'

Mesh=LIRE_MAILLAGE(UNITE=20,

                   FORMAT='MED',);

#Definition & assignment of finite element model 

Model=AFFE_MODELE(MAILLAGE=Mesh,

                  AFFE=_F(GROUP_MA='RIM',

                          PHENOMENE='MECANIQUE',

                          MODELISATION='3D',),);
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   9.2 Definition of the material

 9.2 Definition of the material

The material chosen for this study, is an aluminum from the 6000 family with a Young's 
module of 70000 MPa, a Poisson�s ratio of 0.3 and a yield strength (Rp0.2) of 105 MPa.
The traction curve for this material is an experimental point by point curve generated from 
monotone traction on a test piece (See figure 9.1)

Plasticity is implemented in Code Aster in the form of � = f (�total) . The abscissa (X 

coordinate) must not be zero: it corresponds to the elastic deformation �=�
e=
Rp0.2

E
.

The entire model is assigned this material.

#Definition of material

Traction=DEFI_FONCTION(NOM_PARA='EPSI',NOM_RESU='SIGM',VALE=(0.001

5,105.0,0.002,113.0,0.003,117.0,0.004,120.0,0.005,122.0,0.01,135.0

,0.02,155.0,0.03,172.0,0.04,186.0,0.05,198.0,0.06,208.0,0.07,218.0

,0.08,227.0,0.09,234.0,0.1,241.0,0.11,248.0,0.12,254.0,0.13,259.0,

0.14,264.0,0.15,268.0,0.16,273.0,0.17,276.0,0.18,280.0,0.19,283.0,

0.2,286.0,0.25,299.0,0.3,308.0,0.35,314.0,0.4,319.0,0.45,322.0,0.5

,325.0,0.9,333.0,),INTERPOL='LIN',PROL_DROITE='LINEAIRE',PROL_GAUC

HE='CONSTANT',);

A6000=DEFI_MATERIAU(ELAS=_F(E=70000,

                            NU=0.3,),

                    TRACTION=_F(SIGM=Traction,),);

Material=AFFE_MATERIAU(MAILLAGE=Mesh,

                       AFFE=_F(GROUP_MA='RIM',

                               MATER=A6000,),);
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   9.2 Definition of the material

 9.3 Converting element groups to node groups

Some of the keywords require node groups instead of element groups in order to perform 
their action � therefore we ask Code Aster® to convert these groups and retain their 
respective names.

#Definition of node groups based on element groups.

Mesh=DEFI_GROUP(reuse =Mesh,

                MAILLAGE=Mesh,

                CREA_GROUP_NO=(_F(GROUP_MA='PLAN_XOY',),

                               _F(GROUP_MA='PLAN_120',),

                               _F(GROUP_MA='suprt1',),

                               _F(GROUP_MA='suprt2',),

                               _F(GROUP_MA='disp1',),

                               _F(GROUP_MA='disp2',),),);

 11 of 38
Apr 5, 2011

Figure 9.1: Traction curve for A6000



Plasticity tutorial for CAELinux.com by Paul Carrico � Translated and reworked by Claus Andersen

   9.4 Definition of the boundary conditions

 9.4 Definition of the boundary conditions

Face- and volume-groups have only 3 translatable degrees of freedom (DDL), DX, DY and 
DZ � to avoid pivoting (singular matrix) and to have a static situation, the 'support' face-
groups need to have these movements blocked. (See figures 9.2, 9.3 and 9.4)

The cyclic symmetry of the model is imposed with the command LIAISON_OBLIQUE � 

[U4.44.01].

1. The plane of symmetry PLAN_XOY is blocked from global Z-axis movements 
(DZ=0)

2. The plane of symmetry PLAN_120 is blocked from Z-axis movements in its local 

coordinate system (as assigned by LIAISON_OBLIQUE) � equivalent to blocking 
DX and DZ in the global coordinate system.

3. The extremity of the rim is blocked from movements in the Y-axis.

#Definition of boundary conditions

BC=AFFE_CHAR_MECA(MODELE=Model,

                  DDL_IMPO=(_F(GROUP_NO='PLAN_XOY',

                               DZ=0.0,),

                            _F(GROUP_NO='suprt1',

                               DY=0.0,),),

                  LIAISON_OBLIQUE=_F(GROUP_NO='PLAN_120',

                                     ANGL_NAUT=(0,-120,0,),

                                     DZ=0.0,),);

 9.5 Load

A forced displacement is imposed on the hub of the rim (disp1) in the Y-axis. Note that 
unlike a linear elastic case (MECA_STATIQUE) where only the final result in considered, 
every intermittent step of an nonlinear case must converge before the next step is initiated.

Assigning an appropriate time stepping list (one step = one time increment) for a nonlinear 
calculation, is a compromise of having the largest possible steps to save computations 
time, versus having time steps small enough to let the solution of each step converge.

An approach is to make a step neither too large nor too small and let Code Aster® 
automatically divide the step in case of non-convergence. A simplified approach has been 
applied here using the keyword DEFI_LIST_INST (as described in the next paragraph).
DEFI_LIST_INST takes an existent list of real numbers (DEFI_LIST_REEL) for the time 
stepping scheme, and in the event of non-convergence divides the time step 5 times 
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   9.5 Load

(SUBD_PAS=5). In the event of non-convergence in the newly created (smaller) time 
steps, it divides the time step again, up to 4 times (SUBD_NIVEAU=4).

For this study, the hub of the rim is displaced 10mm linearly over the course of the time 
steps using the function 'LoadRamp' with AFFE_CHAR_MECA_F.

#Definition of load : displacement imposed

LoadRamp=DEFI_FONCTION(NOM_PARA='INST',VALE=(0,0,

                             10,10,

                             ),INTERPOL='LIN',PROL_DROITE='LINEAIR

E',PROL_GAUCHE='CONSTANT',);

Load=AFFE_CHAR_MECA_F(MODELE=Model,

                      DDL_IMPO=_F(GROUP_NO='disp1',

                                  DY=LoadRamp,),);
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   9.5.1 Group diagram

 9.5.1 Group diagram
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   9.5.1 Group diagram
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Figure 9.3: Only showing groups
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   9.5.1 Group diagram
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   9.5.2 LIAISON_OBLIQUE diagram

 9.5.2 LIAISON_OBLIQUE diagram

 9.6 Definition of lists

#Definition of time steps - real numbers

ListReel=DEFI_LIST_REEL(DEBUT=0,

                        INTERVALLE=_F(JUSQU_A=10,

                                      PAS=0.1,),);

#Definition of time stepping list with subdivision of time steps 

in the event of non-convergence

ListInst=DEFI_LIST_INST(DEFI_LIST=_F(METHODE='MANUEL',

                                     LIST_INST=ListReel,),

                        ECHEC=_F(EVENEMENT='ERREUR',

                                 SUBD_PAS=5,

                                 SUBD_NIVEAU=4,

                                 SUBD_METHODE='UNIFORME',),);

#List of time steps that should be archived (saved) by the solver

Archive=DEFI_LIST_REEL(DEBUT=0,

                       INTERVALLE=_F(JUSQU_A=10,

                                     PAS=1,),);
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assigned by LIAISON_OBLIQUE
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   9.7 Nonlinear calculation

 9.7 Nonlinear calculation

Some simple parameters for the nonlinear solver is set up; we'll go through them briefly.

 9.8 COMP_INCR

COMP_INCR is an abbreviation of Comportement Incremental, which translates to 
Incremental Behavior. In effect, this means that Code Aster® keeps a history of the 
material behavior for each time step, and in the case of plasticity, follows the traction curve 
to determine whether (and how far) the material has entered the plastic domain, based on 
the previous time step.

The deformation per time step is calculated as d �total=d �
elastic+d �

plastic

The plasticity is determined as d �
pl=d � �

� �

� �
where the plastic potential � and type of 

hardening (isotropic, kinematic or other) is determined by the keyword RELATION:

VMIS_ISOT_TRAC; which means the material has a plastic potential based on Von Mises 
(widespread in ferrous metals), has nonlinear isotropic hardening and utilizes a traction 
curve.

 9.9 DEFORMATION

Different formulations are available to describe the deformation of the material:

1. PETIT: Classic formulation where the strain tensor is linearized for each small 

change ( � ij=
1

2
[ gradU ij+

t
gradU ij] ).  This formulation is valid for strain up till 5%.

2. PETIT_REAC: Still remaining with small strains, but with a mesh that is updated on 
each time step, this formulation can be used with great deformation, provided local 
rotation stays small and small time steps are used.

3. GROT_GDEP: Allows for great rotation and great displacement, but with small 
strains.

4. SIMO_MIEHE: Allows for great strains and plastic deformation (and great rotation / 
displacement) � Only accepts elements of the type 3D, 3D_INCO, AXIS, 
AXIS_INCO, D_PLAN, PLAN_INCO and the behaviors ELAS, VMIS_ISOT_LINE, 
VMIS_ISOT_TRAC and ROUSSELIER

5. Other types exists as well but not described here: GDEF_HYPO_ELAS, 
GREEN_REAC
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   9.9 DEFORMATION

For more information, read the document [U4.51.11] Comportements non linéaires and 
the reference papers [R5.03.02] and [R5.03.21].

 9.10 INCREMENT

Uses the previously defined list 'ListInst' that automatically subdivides time steps in the 
event of non-convergence. 

 9.11 NEWTON

Two keywords are used here:

1. PREDICTION: Using the rate of change of the matrix tangent (See [U4.51.03])

2. REAC_ITER: A value of 0 (zero) means the matrix tangent is updated at the 
beginning of each time step, whereas a value of 1 means the matrix tangent is 
updated at each increment of the time step (this can improve convergence, but at 
the cost of increased computational time). 

 9.12 CONVERGENCE

Here we define the greatest residual value we can accept if we are to consider the results 
valid and continue to the next time step � we also define how many iterations each time 
step can have before either stopping the calculation or subdividing the time step.

1. RESI_GLOB_MAXI / RESI_GLOB_RELA: A maximum value of 10-4 is considered 
'okay' for this study, but for greater precision, a value of e.g. 10-6 should be used, at 
the cost of greater computational time of course.

2. ITER_GLOB_MAXI: A maximum of 10 iterations per time step can be used to reach 
the above convergence criteria, otherwise stop the the calculation or subdivide the 
time step.

 9.13 ARCHIVAGE

Considering that the calculation might subdivide many time steps and perhaps several 
times, generating a lot of output, an alternative list is used to tell the solver only to save 
certain time steps for later post processing. The keyword LIST_INST uses the list of real 
numbers 'Archive' to tell the solver to save only 10 time steps (calculation ends at 
JUSQU_A=10 and PAS=1 means that time steps 1,2,3,4,5,6,7,8,9,10 will be saved)

 19 of 38
Apr 5, 2011



Plasticity tutorial for CAELinux.com by Paul Carrico � Translated and reworked by Claus Andersen

   9.13 ARCHIVAGE

#Nonlinear solution

RESOL_NL=STAT_NON_LINE(MODELE=Model,

                       CHAM_MATER=Material,

                       EXCIT=(_F(CHARGE=BC,),

                              _F(CHARGE=Load,),),

                       COMP_INCR=_F(RELATION='VMIS_ISOT_TRAC',

                                    DEFORMATION='SIMO_MIEHE',),

                       INCREMENT=_F(LIST_INST=ListInst,),

                       NEWTON=_F(PREDICTION='TANGENTE',

                                 REAC_ITER=0,),

                       CONVERGENCE=_F(RESI_GLOB_MAXI=1e-4,

                                      RESI_GLOB_RELA=1e-4,

                                      ITER_GLOB_MAXI=10,),

                       ARCHIVAGE=_F(LIST_INST=Archive,

                                    ARCH_ETAT_INIT='OUI',),);

FIN();
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   10 Stage 2 � Post processing

 10 Stage 2 � Post processing

As noted before, the second stage of this study utilizes the previously obtained data 
generated from the mechanical calculation, to further process the data.

The second command file begins with the keyword POURSUITE - [U4.11.03] which tells 
Code Aster® to use the data contained in the 'base' folder. As such, when opening a 
'poursuite command file' in EFICAS®, EFICAS® will ask which command file it should 
continue from (i.e. rim_solution.comm) . This is so that it knows what concept names are 
available/valid for post processing.

 10.1 The command file

 10.1.1 Calculating elements and nodes

For this study, we will use two output file formats: POS and MED � this ensures that the 
results can be read by both Salomé® and GMSH® - if one prefers one over the other.

Results are obtained from the integration points (Gauss points - ELGA) for optimal 
accuracy. More on this subject later.

By using the same concept name as used for the nonlinear solver (RESOL_NL), we tell 
Code Aster® to 'enrich' the obtained results, with values calculated on the elements. The 
same is done when values on the nodes are calculated.

For the element calculation, values are only calculated at the last time step (INST=10), 
whereas the values for the forces on the nodes (FORC_NODA) are calculated for the 
entire simulation (TOUT_ORDRE=OUI) � this is because we need the evolution of the 
node forces later on. Furthermore we only calculate the node forces on the group 'disp1'.

Element fields calculated:

� SIEF_ELNO_ELGA: Principal stresses SXX, SYY, SZZ, SXY... etc.

� VARI_ELGA: Internal variables from the nonlinear calculation � plasticity et al. 

� EQUI_ELGA_EPSI: Equivalent strain calculated at integration points.

� EQUI_ELGA_SIGM: Equivalent stress calculated at integration points. Von Mises 
stress, Tresca etc.

� Note: The displacement field DEPL  and VARI_ELGA does not need to be 
calculated as it is extracted directly from the mechanical calculation.
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   10.1.1 Calculating elements and nodes

POURSUITE();

#Calculate values at integration points (Gauss - ELGA) and on 

element nodes (ELNO)

RESOL_NL=CALC_ELEM(reuse =RESOL_NL,

                   RESULTAT=RESOL_NL,

                   INST=10,

                   OPTION=('SIEF_ELNO_ELGA','EQUI_ELGA_EPSI','EQUI

_ELGA_SIGM',),);

#Calculate values at nodes

RESOL_NL=CALC_NO(reuse =RESOL_NL,

                 RESULTAT=RESOL_NL,

                 TOUT_ORDRE='OUI',

                 OPTION='FORC_NODA',

                 GROUP_NO_RESU='disp1',);

 10.1.2 Writing the results to MED

#Write/print the results (to a mesh in this case)

IMPR_RESU(FORMAT='MED',

          RESU=_F(MAILLAGE=Mesh,

                  RESULTAT=RESOL_NL,

                  NOM_CHAM=('DEPL','EQUI_ELGA_SIGM','EQUI_ELGA_EPS

I','VARI_ELGA','EPSI_ELGA_DEPL','FORC_NODA',),

                  INST=10,),);
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   10.1.3 Writing the results to POS

 10.1.3 Writing the results to POS

GMSH® cannot display the vector components from a field in a MED file, but when writing 
the results to a POS file, all the vectors and scalars are presented in the main windows, 
and this can however, can create somewhat of a mess. Because of this, we divide the 
IMPR_RESU keyword up into four parts, and for each field we select what components we 
want to include (NOM_CMP). In the special case of the displacement, we tell Code Aster® 
that we want the resultant (TYPE_CHAM=3D_VECT) of the three displacement vectors 
DX,DY,DZ.

IMPR_RESU(FORMAT='GMSH',

          UNITE=80,

          RESU=(_F(MAILLAGE=Mesh,

                   RESULTAT=RESOL_NL,

                   NOM_CHAM='EQUI_ELGA_SIGM',

                   INST=10,

                   NOM_CMP='VMIS',),

                _F(MAILLAGE=Mesh,

                   RESULTAT=RESOL_NL,

                   NOM_CHAM='DEPL',

                   INST=10,

                   TYPE_CHAM='VECT_3D',

                   NOM_CMP=('DX','DY','DZ',),),

                _F(MAILLAGE=Mesh,

                   RESULTAT=RESOL_NL,

                   NOM_CHAM='EQUI_ELGA_EPSI',

                   INST=10,

                   NOM_CMP='INVA_2',),

                _F(MAILLAGE=Mesh,

                   RESULTAT=RESOL_NL,

                   NOM_CHAM='VARI_ELNO_ELGA',

                   INST=10,

                   NOM_CMP=('V1','V8',),),),);

Note: Normally a POS file will have a unit number of 37, but any number can be assigned 
with the UNITE keyword � it must of course have a corresponding number in ASTK®.
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   10.2 Reviewing the results

 10.2 Reviewing the results

 10.2.1 Deformation

Figures 10.1, 10.2 and 10.3 shows the deformed shape compared to the original mesh at 
last instant.

 24 of 38
Apr 5, 2011

Figure 10.1: Deformation with continuous mapping
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   10.2.1 Deformation
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Figure 10.2: Deformation with vector arrows

Figure 10.3: Deformation with iso-surfaces
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   10.2.2 Equivalent von Mises stress

 10.2.2 Equivalent von Mises stress

Figures 10.4 and 10.5 shows equivalent von Mises stress (EQUI_ELGA_SIGM, 

CMP=VMIS for POS files) at last instant.
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Figure 10.4: Equivalent von Mises stress � continuous 
mapping
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   10.2.2 Equivalent von Mises stress
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Figure 10.5: Equivalent von Mises stress � continuous 
mapping
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   10.2.3 Equivalent strain

 10.2.3 Equivalent strain

Figures 10.6 and 10.7 shows equivalent strain (EQUI_ELGA_EPSI, CMP=INVA_2) at last 
instant.
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Figure 10.6: Equivalent strain, continuous mapping
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Figure 10.7: Equivalent strain, continuous mapping
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   10.2.4 Cumulative plastic strain

 10.2.4 Cumulative plastic strain

Figure 10.8 shows the cumulative plastic strain (VARI_ELGA, CMP=V1)
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Figure 10.8:  Cumulative plastic strain
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   10.2.5 Indication of plasticity

 10.2.5 Indication of plasticity

Figures 10.9 and 10.10 indicates where the material has yielded (VARI_ELGA, CMP=V8). 
A value of 0 indicates no yield whereas a value of 1 indicates material yield.
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Figure 10.9: Indication of yield
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   10.2.5 Indication of plasticity

 10.3 Force vs. displacement on the rim hub

To show how forces evolve on the imposed displacement, the node reactions must be 
extracted on the data post-processed. This requires a few steps:

� Extract nodal forces and displacements for nodes

� Write extracted results to a table (and a file for review)

� 'Recover' a function for both forces and displacements

� Print (write) the generated curve for force vs. displacement with XMGrace®

Lets take the process step by step.
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Figure 10.10: Indication of yield
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 10.3.1 Extracting nodal forces

Using the integrated post processor keyword POST_RELEVE_T - [U4.81.21], each 
ACTION is assigned an extraction operation and a unique name (INSTITULE) for later 
identification.

The previous result concept is reused, and a named field of the result is specified. In this 
case we want to extract values from displacement and nodal forces � DEPL and 
FORC_NODA.

TOUT_ORDRE denotes that we want values from all instants, we want the values from a 
single node (NOEUD=Nxxxx) and finally which vectorial component to extract 
(NOM_CMP=DY)

(Only one action shown here)

POST_R=POST_RELEVE_T(ACTION=(_F(OPERATION='EXTRACTION',

                                INTITULE='Uy',

                                RESULTAT=RESOL_NL,

                                NOM_CHAM='DEPL',

                                TOUT_ORDRE='OUI',

                                NOEUD='N7962',

                                NOM_CMP='DY',),

Write the POST_R table to the .resu file � if left blank, unit number 8 is used, which is the 
default for the .resu file � any other unit number / file is also valid.

IMPR_TABLE(TABLE=POST_R,);

 10.3.2 Recover a function for Uy and Fy

RECU_FONCTION - [U4.32.03] accepts the previously created table; each instant as X 
parameter, and as Y parameter the component DY. By using the keyword FILTRE and 
NOM_PARA / VALE_K, we tell the post processor to extract values from the column 
INSTITULE with the rows named Uy and Fy respectively. Furthermore from the set, extract 
the values from the columns INST and DY.

Dy=RECU_FONCTION(TABLE=POST_R,

                 PARA_X='INST',

                 PARA_Y='DY',

                 FILTRE=_F(NOM_PARA='INTITULE',

                           VALE_K='Uy',),);

FY=RECU_FONCTION(TABLE=POST_R,
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   10.3.2 Recover a function for Uy and Fy

                 PARA_X='INST',

                 PARA_Y='DY',

                 FILTRE=_F(NOM_PARA='INTITULE',

                           VALE_K='Resultante',),);

 10.3.3 Write / print the curve with XMGrace®

To write a curve with XMGrace®, we tell Code Aster® to use XMGrace® as for-matter, 
and the file format Postscript.

The curve is composed of the previously created functions Uy and Dy. 

(The meaning of the rest of the settings can be found in IMPR_FONCTION � [U4.33.01])

IMPR_FONCTION(FORMAT='XMGRACE',

              PILOTE='POSTSCRIPT',

              UNITE=51,

              COURBE=_F(FONC_X=Dy,

                        FONC_Y=FY,

                        LEGENDE='Fy vs. Uy',

                        STYLE=8,

                        COULEUR=1,

                        MARQUEUR=1,),

              TITRE='Force VS displacement',

              LEGENDE_X='Uy [mm]',

              LEGENDE_Y='Fy [N]',);

FIN();

Alternatively one can extract the values from the group disp1, and use the resultant vector 
instead. This way, the reaction force can be divided over the area of the hub. Remember 
to multiply the force by 3, since we work with 1/3 of the model. The surface of the imposed 
displacement at the hub is ~9000mm² (Figure 10.11)
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   10.3.3 Write / print the curve with XMGrace®
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Figure 10.11: Force / displacement curve
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   11 Getting accurate results with Code Aster®

 11 Getting accurate results with Code Aster®

 11.1 Integration points (Gauss points)

In this tutorial every field we've extracted and printed, we've used the fields generated from 
the integration points on the elements, the Gauss points (ELGA � element Gauss). This is 
because these are the exact values calculated by Code Aster® - every other type of field 
such as elements nodes (ELNO) and nodes (NOEU) are generated by extrapolating and 
interpolating the values from the integration points. While these fields (ELNO and NOEU) 
generates very pretty fields in post processors (such as Salomé®), this 
interpolation/extrapolation of values leads to inaccurate or ridiculous results, such as 
negative von Mises stress. 

 11.2 Linear or quadratic elements?

Linear triangles (TRIA3) and tetrahedrons (TETRA4) should never be used for anything 
other than adjusting time steps, preliminary results and such. For anything else, the 
element type is too stiff and will not generate reliable results. One must convert them to 
quadratic (2nd order) elements (TRIA6 and TETRA10) using either a preprocessor or within 
Code Aster®. 

Quadrangles and hexahedrons behave much better with finite element programs and one 
should strive to use them where possible. Quads and hexas however, also benefit from 
being converted into quadratic elements. Especially in areas where changes in the stress-, 
strain gradients etc. are steep. 

At the cost of increased computational time, quadratic quadrangle/hexahedron elements 
will always provide a superior and accurate result.
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 12 Conclusion, remarks and author(s)

Remark:

Any and all information and content in this document is published under the GPL license 
and can as such be used or reproduced in any way. The author(s) only ask for 
acknowledgment in such an event.

Acknowledgment goes out to EDF for releasing Code Aster® as free software and to all 
those who help out by answering questions in the forum and writing documentation / 
tutorials.

Contributions and/or corrections to this tutorial are always welcomed.

Author(s)

Original author: Paul Carrico � paul.carrico_[at]_free.fr

Translator etc.: Claus Andersen � ClausAndersen81_[at]_gmail.com
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   13 System of units

 13 System of units
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Unit
Length m mm ft in
Time sec sec sec sec
Mass Kg tonne slug Lbf-sec²
Force N N lbf lbf
Temperature �C �C �F �F
Area m² mm² ft² in²
Volume m³ mm³ ft³ (cu-ft) in³ (cu-in)
Velocity m/sec mm/sec ft/sec in/sec
Acceleration m/sec² mm/sec² ft/sec² in/sec²
Angle, rotation rad rad rad rad
Angular velocity rad/sec² rad/sec² rad/sec² rad/sec²
Volumetric mass Kg/m³ Tonne/mm³ slug/ft³ lbf-sec² /in�
Moment, couple N-m N-mm Ft-lbf In-lbf
Linear force N/m N/mm lbf/ft lbf/in

N/m2 (Pa) N/mm² (Mpa) lbf/ft² lbf/in² (Psi) 
Thermal dilation coefficient �/  C (/K) �/  C (/K) �/  F (/K) �/  F (/K)
2nd moment of inertia in a beam Igz m� mm� ft� in�
Transverse inertial moment in a beam Kg-m² Tonne-mm² Slug-ft² Lbf-in-sec²
Energy, work, heat J mJ Ft-lbf In-lbf
Energy, transfer rate W mW ft-lbf/sec in-lbf/sec
Temperature gradient � C/m � C/mm � F/ft � F/in
Thermal flux W/m² mW/mm2 lbf/ft-sec lbf/in-sec

Thermal conductivity �mW/mm-  C �lbf/sec-  F �lbf/sec-  F

Specific heat C_p �mJ/tonne-  C �ft-lbf/slug-  F �in² /sec² -  F

Metric

MKS

Metric

MmNS

Anglo-Saxon

FPS

Anglo-Saxon

IPS

Surface force
(Stress, pressure, Young's module)

�W/m-  C

�J/Kg-  C


